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A linearized form of the Gross-Pitayevski (GP) equation is used to calculate the rate at which
quasiparticles are created by a small sphere moving through a superfluid at a velocity greater
than (wp /k)min, the Landau roton critical velocity. Because the excitations described by the
linearized GP equation can be given a hydrodynamic interpretation, the qualitative features of
the model porposed here for the roton critical velocity are analogous to the many critical-
velocity phenomena of classical physics. The quantitative results of the model indicate that
energy dissipation sets in so rapidly that, once the creation of quasiparticles is allowed kin-
ematically, it should be impossible experimentally to force a negative-ion complex to move
observably faster than the roton critical velocity. An investigation of the meaning of the lin-
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earized GP equation is also given.
INTRODUCTION

The roton critical velocity predicted by Landau
in 1941' was first observed experimentally by
Meyer and Reif in 1961.2 By measuring the en-
ergy dissipated by a negative-ion complex moving
through superfluid helium at low temperature and
high pressure, ® a threshold was observed for the
creation of excitations in the superfluid. Their
measured critical velocities agreed with those
predicted by Landau, namely, (wp/k)pyin~ 52-57
m/sec depending on the pressure; and the dis-
tinction between quasiparticle? and vortex creation
has been particularly clarified in the later experi-
ments of Rayfield® and of Neeper and Meyer. °

The original theory predicting the roton critical
velocity was a kinematic argument showing that it
becomes possible for a foreign body to create
quasiparticles in the superfluid only when the
foreign body moves faster than v, = (wg/%)min,
wp, being the quasiparticle excitation spectrum.
Since that time, only one theoretical discussion
has attempted to investigate the magnitude and
velocity dependence of the rate of energy dissipa-
tion due to this allowed creation of the quasipar-

ticles when the foreign body moves faster than
v,. 7 As suggested by Reif and Meyer and elabo-
rated in Appendix A, one would at first expect to
determine this energy dissipation by carrying out
a Fermi “golden rule” calculation of the probability
rate for the quasiparticle creation processes. How-
ever, the interaction between an ion complex and
the roton quasiparticles of the superfluid is un-
known .® One needs to know this interaction and
needs a model analogous, for instance, to the de-
formation potential commonly used for the elec-
tron-phonon interaction in metals.®

With the excitations of the superfluid described
by a linearized form of the Gross-Pitayevaki (GP)
equation, ° Secs. IV-VI of the present paper use a
hydrodynamic model both for the excitations of the
superfluid and for the interaction between the
moving ion complex and the excitations of the
superfluid. The linearized GP equation and con-
comitant description of the excitations of the sys-
tem are extensions of Gross’s hydrodynamic de-
scription of the superfluid condensate for a zero-
temperature system of weakly interacting bosons.™
With (X, #) expanded as f+ ¢(X, t), where f2 is the
density of the undisturbed condensate, the fluctu-
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ation part of this wave function, ¢(x,?), is associ-
ated with the quasiparticle excitations. Substitut-
ing this expansion for ¥(X, t) into the GP equation,
and assuming | ¢(X, t)| <f, leads to a linearized
equation of motion for ¢(X,¢), Similarly, ex-
pressions for particle and momentum densities
and for the energy-flow density can be expressed
in terms of the fluctuation ¢(X,#). Section III sets
forth the relationship between the real and imagi-
nary parts of ¢(X, ) and a local density fluctuation
and velocity potential 5(X, #) and S(x, ¢), and hence
suggests a hydrodynamically meaningful model of
superfluid excitation.

What is proposed in the present paper is the use
of the property Imo (%, )< S(X, #) to set up a hydro-
dynamic type of boundary-value problem for the
velocity potential of the excitations created in the
superfluid by the ion complex. The moving com-
plex is first replaced by a solid sphere and then by
a hydrodynamic dipole source that is used with the
Green’s function for the equation of motion for
S(%, ) in order to obtain a solution describing the
roton radiation when v > (wk/k)min. However, it
should be pointed out that, although the mathemat-
ics of this approach is classical in appearance and
the terms “phase velocity, ” “group velocity, ”
“constructive interference, ” and “boundary-value
problem” will be used, the problem treated is
basically quantum mechanical in nature because
Planck’s constant appears throughout the equations
in the ratio (%/m). While any wave function can be
given a hydrodynamic interpretation, '? it is only
for the condensed Bose liquid that the phase of a
one-body wave function can be associated with the
velocity potential for the motions of an excited
system.

At this point, one may question the sense in
which the quanta emitted in the individual roton
creation processes may be assumed coherent
when described in the fluctuation ¢(%,t). Accord-
ing to the “golden rule” estimates of Appendix A,
the quasiparticles created by an ion complex mov-
ing faster than v, are emitted in such rapid suc-
cession that they may not be regarded as indepen-
dent and nonoverlapping. In this regard, the situ-
ation is quite analogous to that of Cerenkov radia-
tion where classical electromagnetic theory rather
than quantum electrodynamics is used to describe
the photon emission problem.'® There, the clas-
sical theory follows from the quantum theory by
the replacement of photon operators with ¢ num-
bers in the sense of large-number occupation of
the photon states. It is in this same sense that the
one-body wave function ¢(X,?) can be used in the
superfluid problem to describe the aggregate be-
havior of a large number of quasiparticles super-
imposed on a uniform condensate. The develop-
ment of this point of view is given in Sec. I and
then applied in Secs. II and II to derive various

physical properties in terms of the ¢(X,?)’s.

In another sense, the Cerenkov and roton radia-
tion problems are quite different. When there is
no dispersion in a medium, the wave disturbance
created by a moving foreign body is confined to
large-amplitude shock fronts. Such is the case
for Mach waves and Cerenkov radiation. On the
other hand, when the group velocity can take on a
range of values in a dispersive medium, the wave-
radiation disturbance created by a moving foreign
body can be extended over a considerable region
of space, and hence be of small amplitude. Such
is the case for several water-wave phenomena'* —
in particular, the surface waves created bya small
object moving slightly faster than 23 cm/sec.'®
For the superfluid problem the linearization con-
dition |¢(X, t)| < f is a reasonable assumption
based on the fact that the quasiparticle spectrum
has pronounced dispersion in the roton region.
The assumption, however, turns out to be valid
only at large distances from an object moving at
the roton critical velocity. Because of this diffi-
culty, the linearized theory can be used to calcu-
late only a lower bound for the roton radiation.

Since the material to be presented covers sever-
al disciplines, a general outline is given here in
the Introduction. Section I addresses basic ques-
tions concerning the meaning of the linearized GP
equation when applied to the roton radiation prob-
lem, especially the analogy with the classical,
large-occupation limit used implicitly in the stand-
ard theory of Cerenkov radiation. Using the for-
mulations of Sec. I, Secs. II and III express var-
ious physical properties of the aggregate quasi-
particle excitations in terms of o, t): The dis-
cussion in Sec. II is devoted to the particle, mo-
mentum, energy, and energy-flow densities; Sec.
III is devoted to equations of motion, the velocity
potential, and approximate boundary conditions.

Although the results at this point are all self-
consistent within the approximations of the gener-
alized Bogoliubov theory, !¢ the formulas have to
be simplified for the purpose of developing the
roton wave-radiation model of Sec. IV-VI. For
instance, while the equation of motion first derived
for ¢(X,t), namely, Eq. (3.7), is a generalization
of the linearized GP equation, it is also too for-
midable to use in a simple model. Dropping the
intractable terms is equivalent to making the ap-
proximations of standard Bogoliubov theory'” and
reduces the equation of motion to Eq. (3.8), the
linearized GP equation. It is Eq. (3.15), a variant
of this simplified equation for ¢(X,?), that is used
to describe the velocity potential S(%, ¢) in the
“boundary-value problem” solved in Sees. IV-VI.
Since a derivation of the excitation spectrum is not
within the objectives of the present paper, the in-
teraction potential in Eq. (3. 15) is simply re-
placed by an effective potential, adjusted phenom-
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enologically so as to make the Bogoliubov spec-
trum agree with the empirically known wp, in the
roton region.

In Sec. IV the Green’s function for S(X, ) is used
with a suitable source distribution to derive a for-
mula for S(R), the approximate velocity potential
for the disturbance created in the model superfluid
system by a moving sphere of 10-20 A radius.
When the velocity of the moving sphere passes from
less than to greater than (wp/k)yin, the distur-
bance that it creates passes abruptly from retard-
ed dipole flow to a roton wave-radiation field.
Following the discussion in Sec. V for the general
form of this wave-radiation field, a derivation is
given in Sec. VI for the rate of energy lost into the
roton radiation. The results of Sec. V are analo-
gous to the classical water-wave problem already
mentioned. !°

Estimates based on a “golden rule” calculation
are given in Appendix A. Appendix B suggests
that, since time-retardation effects are essential
in the present model for understanding the onset of
roton radiation, they may also play a key role in
the problem of how primordial vorticity can form
in a superfluid.

I. WAVE-FUNCTION APPROXIMATION

The relationship between quantum electrodynam-
ics and electromagnetic theory is well known —
when the number of photons is large, the potential
field operators of quantum electrodynamics can be
replaced by the classical potential field variables
of electromagnetic theory. The corresponding
relationship between the second-quantized formu-
lation for bosons and Schrddinger wave functions
is perhaps not as common - when the number of
bosons is large, the field operator zp(’ t) can be
replaced by a one-particle wave function (%, ¢).1%
For instance, if the operator zp(x t) is expanded on
a complete set of states according to

V&, 1) = 2us (x, thas (1.1)

then the waye function for the single-particle state
labeled by k can be expressed

up®, 1) o< (kly(, 1) 1K), (1.2)

where the number of particles in the level k of the
state |k) is large compared to unity, in order that
the expectation value of ai may be treated (in a
sense to be carefully defined) as nonzero., If the
state used in taking the expectation value repre-
sents macroscopic occupation over a spread of k
values, then the operator can be replaced by a
general one-body wave function.

Now, for the condensed system of interacting
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bosons the expansion of the operator 3 (X, ¢) is not
as simple as Eq. (1.1). The approximate one-
body wave function for this system with a given
quasiparticle level highly occupied follows from
the replacement of a Bogoliubov operator EE(t) by
a complex function of time in the equations?® 2!

V&, 1) =e M e, g&, 1], (1.3)
o&,t)=(1/yQ) 25 e i i(t), (1.4)
az)=4,He;0)+4_Da i.(t) (1.5)

Here Q is the volume, 1 the discrete momentum
variable (sometimes also denoted by k), and f2 is
the condensate density N,/Q (N, being the number
of particles in the condensate). The prime indicates
the sufficient restriction that 1=0 is excluded from
the summatlon while the coefficients A (1) and

A (1) are restricted by the condition

A([)-42(1)=1 (1.6)

in order that the quasiparticle operators obey sim-
ple commutation relations. Because of the time
dependence of « I(t), a convenient way of writing
Egs. (1.4) and (1.5) is

9& =1/ DA, D a0 X - o)

>

ca_Dailoe il-X-0ft); (1)

This equation is of precisely the same form as the
operator expansions for the vector and scalar po-
tentials in quantum electrodynamics. The replace-
ment of an a 7(0) by a ¢ number in Eq. (1.7) gives
the wave-function limit for the condensed Bose
system, namely,

b )= H Mg oo )

and

o 0= (n/2 24, @) ' K - 0k)

. -'1,(-1; X wEt)
+A_K)e I, (1.8)
where »>1 is the number of quasiparticles all
approximately in the same momentum level 1=k,
or more generally

e—i(u/h’)t

II)()E, t) = [f+ QO(-}E, t)]
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and o, 1) =2 "{a(&)/Q} 14, (k)e’
. -1 (-1; . ;( - Q)'E t)
+A_®)e 1, (1.9)

where 9 (E) is a general number distribution. Al-
though the wave-function expressions will at first
appear to be unusual, the time averages of the
wave-function expressions always turn out to be
equal to a rigorous expectation value of the oper-
ator expressions.

Among the operator expressions of interest are
yT(, )9, ¢) and Refy Tk, 1)[- inV]p(X, 1)}. The
‘corresponding wave-function expressions give ap-
proximate particle and momentum flow densities.
One can expect the equation of motion for ¢(X, ?),
the fluctuation part of the wave function 3 (X, ¢), to
give the Bogoliubov spectrum when |¢(X, ¢)| is as-
sumed small compared to f. .

However, for expressions involving products of
(X, t) operators, it is not clear a priori whether
or not the products of Bogoliubov operators should
be written in normal-order form before they are
replaced by ¢ numbers. It is argued here that all
operator-product expressions should first be nor-
mal ordered. The various complications of the
theory that result are shown in Sec. II to work out
self-consistently. For instance, with proper nor-
mal ordering the equation of motion for (X, ¢)
gives the generalized Bogoliubov excitation energy
wp, namely, Eq. (2.26) in Paper II, rather than
just the standard Bogoliubov spectrum; and the
average energy density for » quasiparticles of
momentum k turns out to be niiwy,/Q, where wp, is
again given by the generalized Bogoliubov theory.

To understand the need for normal ordering be-
fore making the c-number replacements for the
QET’S and ¢ ’s, one may compare the expectation
values of an operator product in the ground state
and in the state withn>1 quasiparticles all in ap-
proximately the same momentum level k. The
ground-state expectation value is not zero, but
rather is equal to the c-number terms that arise
from writing the product expression in normal-
order form with only af; ’s operating on the vacuum-
state vector. Now, when the expectation value is
taken in the excited state, one might at first ex-
pect these normal-order correction terms to be
negligible compared to the large wave-function
contributions. However, even with the large total
number of quasiparticle present in a wave packet
state of momentum E, there must be enough un-
certainty in the quasiparticle number distribution
such that any given excitation level has an average
occupation number much less than unity in the
limit of an infinite-volume system. Then the nor-
mal-order correction terms are all as significant
as for the ground state, and the excited-state prop-
erties show contributions in addition to, and are

ROTON CRITICAL VELOCITY IN SUPERFLUID HELIUM

not complete alterations of, the ground-state
properties.

For instance, the energy of the wave packet of
momentum k should be E( plus an excitation ener-
gy hwy,, where Eq and Zwy, are given for the gen-
eralized Bogoliubov theory by Egs. (2.25) and
(2. 26) of Paper II. In the electromagnetic case
where there is no photon-photon interaction, 7Zwy
reduces to €3 — 1, and E( corresponds to just the
zero-point vacuum fluctuation energy E €p A_%(k)
which is usually dismissed as unobservable. The
zero-point effects in the condensed system of in-
teracting bosons, on the other hand, influence the
excitation spectrum as well as the ground-state
energy and cannot be dismissed as insignificant.

The various properties of the Bose system are
defined in terms of products of the field operators
#(X,t). After the operator displacement of Eq.

Tl. 3) for the condensed-boson system, the various
properhes are expressed in terms of the opera-
tors ¢ T, t) or <p(x t) and their spatial derivatives.
Then an operator product like ¢, ¢, can be written
@ 0= @0+ AP, (1.10)
where only the normal-order correction term
(@1 ¥, ac number, has to be elaborated for the
various forms of products. Then the normal-or-
dered products such as : ¢, ¢, : are simply replaced
by the corresponding products of wave functions
given by Eq. (1.8) or, in the more general case,
by Eq. (1.9).

For later purposes, the most useful normal-
order correction terms are
M., 00,
S (l/Q)E'A(;)(I)A_(I)e_zI e

()=

(o' & Do

(@ " &+, t)V<PX t))
—i/)Y14A _ {ra_ie’T ";,
) (1.11)
05,0920 0,
il1.7

b

- W/aX? A(+)(1 A_()e

(=2 /2m)v? QT(E, 1)V (X, t) "

; o 2>
=(-i/Q)2"1 €A 1.

The question of quasiparticle coherence in the
large occupation limit is related to the argument
just given for keeping the normal-order correction
terms. The assertion is that for a large-volume
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system the fine details of the quasiparticle-number
eigenvalues nj are indeterminate and irrelevant

in the large-occupation limit in which operators
are replaced by ¢ numbers. Rather than by ng,
this large-occupation limit is fixed by only a
coarse-grained number distribution 9% (k) defined
in the infinite volume limit by

gu(k) = lim[ IR 1], (1.12)

a-«Lpd@") '/ b

where the sums over the momentum levels 1’ are
limited to a domain D(I ") about the value T, D"
being very small but larger than the diminishing
spacing 61’ between the levels of the system as
Q-. Although both »jand 51 become small,

(n,E|: (odd number of ¢’s): ]n,ﬁ) =0,

and in fact #»7? may become quite erratic in this
limit, 9U(K) is well defined, retaining only the
smooth-averaged behavior of »7 .. When the total
number of quasiparticles is large, 91(k) can be a
nonzero function of f(, Jor instance, a sharply
peaked function about 1 =k for a wave packet. The
large-occupation limit, then, is not related unique-
ly to a state of the system, both because of the
erratic behavior of ] for increasing Q and be-
cause a given 7] ’ does not define a state of fixed
phase.

It is not hard to show that the space- or time-
average expressions involving ¢ (X, #) with the as-
sociated normal-ordering corrections included are
identical to the result obtained by taking a rigorous
expectation value of the corresponding operator
-expressions. The following formulas are used in
Sec. II:

(n,&|: 0w, @&+ 7, 0: [, B = {4, 2®) +4_2@)]cos(® - ) +isin@- Flin/2

(n,&|: 0" & Do &+F,0: [n,B) = 24, (@ cos(k- Pn/a,

(n,k|: @ T()’( + T, t)ef(i, 1): |n, k) = E{[A+2(E) +A_2(E)] sin(K- ) +icos(kK- T )n/Q ,

(n,k|: o& + F, 00V (%, 1): |n, k) =kA (K)A_(K)sin®-F)n/Q ,

(n,&|: TG+ F,00V2 &, ): |n, K> = _2%{4, 2@ +4_ 2@} cos(®- ) —isin®- D}/,

(n,k|: @+ T, g, 0): |n, &) = - 2674 ()4_&) cos( - F) /@,

and (n,'lz|: (- ﬁ2/2m)V2ip(§, t)$f(i,t): |n,-1;) = iﬁekn/ﬂ ;

Here, In, E) is the ket vector with n quasi-
particles of momentum k. The expectation values
are rigorous involving no c-number replacements,
and hence in this case » may or may not be large.

II. EXCITATIONS OF WELL-DEFINED WAVE
NUMBER

In this section the particle and momentum den-
sities and the average particle, momentum, ener-
gy-flow densities of the wave-function excitations
with wave number K are derived within the approx-
imation of the generalized Bogoliubov theory and
the assumption that z/Q < f2. Before expressions
for these quantities are derived, it is convenient
to define notation by pointing out that Eq. (1.8) for
¢k(X, t) may be written in the form

ik-x-w s t)
¢E(§7 t) = B+(E)e

(1.13)
=
-i(ﬁ-i—wkt')

+B_(K)e ! (2.1)

or as
op, )= (ﬂ—lﬁ(i,thi <p-f;(i,t) , (2.2)
where Bi(E)=(n/Q)1/2Ai(k') , (2.3)
(pllz(i,t):§1(E)cos(ﬁ.§—wkt) , (2.4)
(pl-zz(;c,t):é‘z(ﬁ)sin(ﬁ-;c—wkt) , (2.5)
6,E)=8 & +B_{&), (2.6)
and &,E®=8 & -B_E&). 2.7

The B’s and {’s, of course, are restricted through
Eq. (1.6) according to
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FIG. 1. The trajectories of ¢! ¥/t 4= & 1) and ¥, 1).
The arrows represent the complex values of these wave
functions, the trajectories being traversed in the clock-
wise sense for increasing time.

1

B *([&) - B _2(k)=n/2=¢,[&)E,([K) . (2.8)

Thus, as shown in Fig. 1, ¢g(X,?) traverses an
elliptic trajectory around the origin with inter-
cepts £,(k) and &,(k) on the real and imaginary
axes and area /9. In the approximation of stan-
dard Bogoliubov theory for which all normal-
order corrections are neglected, one can show
that the following limiting values for the A’s and
¢’s hold:

=

A K)- o 1,
+
A _[&)- - o,
I, - #(f2U, /4m)%k € =n%k%/2m
k k k 2
. and 2.9)
gl(k) -0 n/Q 9
gz(E) —: 90 n/“2 ’
k-0 k=,

Hence one can expect the trajectory of ¢(x,?) to
be a circle in the high-k limit (or when Zw_ and
the kinetic energy cross) and to become a very
elongated ellipse in the low-% limit.

A. Particle and Momentum Densities

The particle- and momentum-density operators are

oG, 0)=9 &, & 0 =r2+ (/) D' A% @)+’ & )+ o & 0]+ 0T & o & 1):

and B&,0)=Refp &, - VoG, 0} =mal(- i/ 21 +790&, )+ : 01 &, NV, 1):],

(2.10)

(2.11)

where Eqs. (1.11) have been used. The momentum contribution from the zero-point oscillations is zero
by symmetry as usual, Then the particle- and momentum-density wave function expressions for excita-

tions in the momentum level k are

P&, 1) =12+ (/DT A [®) +lof & )+ 0p& ]+ | op &, 0)*

and Bp(,0)=Imi [/ Vop &, 1)+ of &, )90, 1)] .

By using Egs. (1.13), one can see that the aver-
age values of p(X,?) and P(x,#) (distinguished
notationally by the omission of position and time
arguments) are

pp=f+ (/DA% [®) + [42 ®) +4° ®)]n/Q  (2.14)

and §E=m?/sz . (2.15)

(2.12)

(2.13)

Thus, on the average, each of the # quasiparticles
in the excited state has a momentum of hE, as one
would expect, but on the other hand involves the
effective number of particles A2 (k) + A2 (k).

Since the total density of the system must be the
same with or without the presence of excitations,
the condensate density /2, or more correctly the
density f2+(1/Q)3’A2(k), must be depleted by

the amount [A2 (k) +AZ (K)]#/Q. Thus the n excita-
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tions of momentum %k can be interpreted as a col-
lective motion of z times [A2 (k) +A2(K)] conden-
sate or superfluid particles. On the basis of Egs.
(2.9), one expects that this effective number of
particles removed from the condensate per exci-
tation is one, only in the high-£ limit or when Zwp,
crosses the free-particle energy €, and that for
low %2 a very large number of particles becomes
involved in the excitation. 23

While net momentum flow and the renormalization
of f2 are due to terms quadratic in ¢(X,¢), the lin-
ear terms in Egqs. (2.12) and (2. 13) dominate the
spatial and time dependence of the particle and
momentump densities — provided that coefficients
of these terms on the order of f(z/Q)¥? are much
larger than coefficients of the quadratic term on
the order of n/Q. Although large compared to
unity, » is assumed small compared to the num-
ber of condensate particles Qf2. Then the den-
sity and momentum fluctuations are approximate-
ly given by

P, 1) =p &, 1) - [F* + 242 @)

d 1 %
= 2f ¢E(x, t)

=2f§1 cos(E-i—wkt) (2.16)
and
— - b = g. -
E(x, DRAEfV % (x, %)
=m?f§2sin(ﬁ-§—wkt), (2.17)

where Eq. (2.2) has been used.

These are sinusoidal fluctuations satisfying the
continuity equation. In the wave-function approxi-
mation, then, the excitation formed from the ag-
gregate of many quasiparticles, all approximately
with the same k value, takes on a wave nature with
sinusoidal density fluctuations traveling through
the medium as a longitudinal compression wave.
These density fluctuations occur for all momenta,
including the 2 - « free-particle limit, and can be
pictured as the fluctuations of the projection of
ei(“/ ﬁ)td)ﬁ(i, t) on the real axis as it traverses the
real trajectory shown in Fig. 1.
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B. Average Energy Density

The Hamiltonian for the system is expressed in
normal-order form for the Bogoliubov operators
in Paper II. It follows that the average energy
when the system contains » excitations, all in ap-
proximately the same momentum level k, is

Ep=E +p[4® ®)+A2®)]n+ 7o n, (2.18)

k k

where quartic terms have been neglected and E,,

K, and wp, are the ground-state energy, chemical
potential, and generalized Bogoliubov spectrum
given by Eqs. (2.25), (2.20), and (2. 26) of Paper
II. However, just as in Eq. (2. 14), the f that ap-
pears in the formulas quoted in Paper II is now that
for a depleted condensate with N, reduced from

the ground-state value by 8N, = [A2 (k) + A%(K)]n.
Then, too, for the zero-temperature theory, p can
be expressed as (1/Q)8E,/af; hence the fact that
[Ai(ﬁ) +A2 (k)] particles are effectively removed
from the condensate for each of the n quasiparticle
excitations works out self-consistently.

Eo+ p[A%(K) + A2 (K)]# is actually the true ground-
state energy expressed in terms of the N, that ob-
tains for the unperturbed system. In addition to
this ground-state energy, Eq. (2.18) shows that
each of the n excitations has energy Zwp, given
exactly, as it should be, by the generalized
Bogoliubov theory.

C. Average Energy-Flow Vector

The excitations must also give rise to a trans-
port of energy through the medium. This energy
transport will be described by an energy-flow vec-
tor defined by the local continuity equation

®,0)=V-J &,1)=0, (2.19)

Py
where p E®X, t) is an energy-density operator. How-
ever, a difficulty arises because the interaction
energy is not local, and an energy-density opera-
tor cannot be defined uniquely. The integral over
space of the energy-density operator must givethe
total Hamiltonian, but the double-integral term in
Eq. (1.1) of Paper II may be expressed in various
ways. For later algebraic convenience, the sym-
metric form is chosen:

ﬁE('}E,t)=(ﬁz/zm)eiT(i,t)-$$(§,t)+% fd%V(F)QT(}Z—%f,t)ﬂT(§+%¥, DYE+3T, 09X -37,1) .

(2.20)

Using the equation of motion for ¥(X,¢), Eq. (1.3) of Paper II, one finds the following time derivative of

Eq. (2.20) for p (X, ?):

b o(&0==F -Im(a/m){[(- n2/2m) 2 V&, 019 9%, )+ [asr VD F (%, )}
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- Im(7z/m) [ d®r V(r)[F XX, F)-F (X - T, 7)]

where FO& D=y & 091 @+F 006707

(%)

; (2.21)
(2.22)

¥ @ and V() being the vector and scalar operators V and V2, and where the commutability of ¥(X, ¢) and

V2y(X, ¢) has been used.

The first part of this expression has been written as the divergence of a vector. To write the rest of this

expression in the same form, one must use the fact that

-

~7 9 > - - -
r-v d\F ) (X+ 2T, F)=F (X, T)- F(X-

X v-1/2

3T,T) .

(2.23) ¢

Then, from Egs. (2.19), (2.21), and (2. 23) the operator for the energy-flow vector can be defined as

4

3 & O=Tm (e/m){[(- 72/2m)V 2 (&, 01V9& 0+ Ime/m)| [ a* V) F O, )]

+Im(/m)] [a3r V)E [

=-1/2 -

d\F )(X,27,7)] .

(2.24)

Now, the quantity of interest is the average energy flow of the excited state with momentum k. As dis-
cussed at the end of Sec. I, this average value is just a straightforward expectation value of Jg(%,t). The
actual calculation is lengthy, however. The E(i)(i, T) must be expanded in terms of normal-ordered ¢
products by using Eq. (1.3) and then Eq. (1.10) and similar expressions for products of three and four ¢
operators. Egs. (1.11) and (1.13) are used as well as the fact that A (k), A_(k), and Vi are even func-
tions of k. The [dX integration turns out to give only a factor of 3, and one eventually finds?*

b

2 42DV 1n/er (/DT (4, DAD Ge/m)+ 3125 vz _sln/2

k+1

This equation is consistent within the approxima-
tions of the generalized Bogoliubov theory, inclu-
ing n/Q<f2. In the approximation of standard
Bogoliubov theory, where normal-order correction
terms are neglected, Eq. (2.25) reduces to

_jE’ = (ﬁi/m)fzvon/sz LU iwen/Q , (2.26)
where wk _is given by the standard Bogoliubov for-
mula and U(K) is the group velocity Vg wk. Thus
only part of the energy flow is propagated by the
wave excitations at the group velocity.

The first term in this equation is a contribution
associated with mass flow, 7%k /m being the mass
translation velocity of the z excitations and f2U,
being the approximate chemical potential per par-
ticle. Yet, the Feynman-Cohen backflow argument
suggests that this term is unphysical for station-
ary states of the system.? It is sufficient here to
state that, since only a lower bound will be calcu-
lated for the energy dissipation by a moving ion
complex, only the propagation part of :I'E, k need
be used.

Although all the symbols needed have not yet
been defined, the actual formula to be used for

Jp = E/m){ei +V 2+ (/@2 A2 (D] n/Q+ (/m)(k+ 3k T2 2V + (1/9)

(2. 25)

1" 'k

—

_jE, % will be given here. As discussed following
Eq. (3.16), the Bogoliubov approximation with a
phenomenological interaction potential is used to
calculate a quantity Samp(ﬁ) defined and related
to ¢,(k) in Eq. (3.3). Since n/Q in Eq. (2.26) is
just ¢,(&)¢,(&) by Eq. (2.8), and ,(K) and ¢,(k)
are related according to the imaginary part of Eq.
(3.8), the energy propagation part of Eq. (2.26)
can be written as

3E,E<(E/k)3(k)smp2(k) ; (2.27)
where g(k)zek(mfz/iff)U(k) 3 (2.28)

Eq. (2.27) will be used in Sec. VI to estimate the
energy lost into the roton radiation field created

by a small sphere moving slightly faster than the
roton critical velocity.

1. GENERAL EXCITATIONS AND TIME-
DEPENDENT BOUNDARY CONDITIONS

The condensate wave function (X, ¢) is usually
determined by using the GP equation and suitable
boundary conditions. Alternatively, with a homo-
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geneous condensate it has been shown that quasi-
particle excitations may be described approximately
by the fluctuation part ¢(X,¢) of ¥, ¢), this
¢(X,t) representing excitations that exist in addi-
tion to rather than as part of the condensate. In
particular, the imaginary part of ¢ (%, t) in Eq.

(1. 9) is suggested here as the convenient unknown
for certain types of eigenfunction problems be-
cause it is proportional to the velocity potential
for the flow field of the general small-amplitude
excitation and can be associated with simplified
fluid-flow boundary conditions. The equation of
motion and the time-dependent Green’s function for
this velocity potential are derived in the present
section,

A. Velocity Potentiaband Boundary Conditions

A velocity potential can be defined for any one-
particle wave function'? and in particular for the
expression for (X, ¢) in Eq. (1.9). While Gross’s
discussion of the condensate hydrodynamics in
Paper Iis for general solutions of the form (X, ¢)
=R(, t)eiS X, t), the same approach will be applied
here for the case of small-amplitude fluctuations.
The formula for P, ¢) given by Eq. (2.13) implies
the velocity field

V&, )=Im(@/m)[f Vo &, 1)+ p* &, ) Vo (X, 1)] .
(3.1)
Again, linearization holds if the amplitude of
¢(X, t) is less than f, in which case

V&E,1)=VS&,1) , (3.2)

where S, t)=(#/mflo,&,1) , (3.3)
and @,(X, t) is the imaginary part of ¢ (X, ) as de-
noted by the separation
e&,)=0,&, )+i@,&,1) . (3.4)
Equation (3. 3) identifies the fluid-flow velocity
potential of the general excitation. Since

[&,0)-dl=/mf) [d{e,&, 1)}

along any flow line, a necessary condition for the
linearization procedure is
JY¥&E, 8 -dl <w/m . (3.5)
Unfortunately, this condition is not satisfied for the
problem of interest here, namely, an ion complex
moving at the roton critical velocity. For a sphere
of radius @ and velocity v, Eq. (3.5) requires
J
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v<h/mam

~ 30m/sec , (3.6)

but the roton critical velocity is on the order of

50 m/sec. However, the linearized theory can
still be applied for calculating lower bounds in the
roton emission problem. The linearized theory
will first be applied for low » inorder to determine
an effective source strength for the influence of the
moving sphere on the liquid. A lower-bound esti-
mate of this source strength is then made for the
velocities of interest. Alternatively, one may
think of this manipulation as reducing the problem
to that of a fictitiously small sphere with its radius
reduced by a factor of 10 or so, but with hydro-
dynamic boundary conditions still applied.

Now, the true boundary condition that should be
applied to S (X, ¢) is nonlinear because on any in-
finite-potential boundary surface, (X, ) must be
zero. However, on the basis of the fact that the
condensate density |§(X, ¢)|2 reaches the value it
has in the bulk liquid at a distance on the order
of the healing length (%2/2mp)*/2 = 1A from the
boundary surface,'* while the radius of an ion com-
plex is at least 10-15 A, the approximation of
simply conserving mass at a boundary surface is
made. The quantum healing-length region around
this sphere is neglected, and the solutionfor S (%, ¢)
is assumed to be limit_qd simply by the condition
that the fluid velocity VS (%, ¢) have no perpendicu-
lar component into or out of the sphere. Then, as
for classical hydrodynamics, this simple boundary
condition is equivalent to a dipole source at the
center of the sphere provided the sphere is moving
slowly enough for time-retardation effects to be
negligible. The difference between a sphere mov-
ing through a classical fluid and the present model,
then, is the fact that Planck’s constant will appear
in the ratio #/m in the equation of motion for

S&,1).

B. Velocity-Potential Equation of Motion and
Green’s Function

The equation of motion for ¢ (X, t) follows from
that for y(X, £), namely Eq. (1.3) in PaperIl, by
translating according to Eq. (1.3), isolating nor-
mal-order correction terms according to Eq. (1.10)
and similar expansions for the products of three
and four operators, and then replacing ¢(%, ) by
oX,1) according to the general wave-function pre-
scription for normal-ordered operator products.
This procedure, very similar to the discussion al-
ready given for the energy-flow vector, leads to
the following linearized equation of motion:

ine&,t)=— (12/2m)V2@ &, t) +12 [ & VE)No*E +T, 1)+ X +T, 1)]
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{0y 17+ /DL [+ a2 D+ v2a, Da_ D)

/% [arvEt T

x{a, DA_0) [¢* & +F, - o&, )] +A2D[e& +F, 1) - &, D]} . @.7)

Not surprisingly, p, given by Eq. (2.20) in Paper
II, is equivalent to the condition that this equation
has no constant term in order that ¢(X, #) has no
linear increase with time and represents only os-
cillations about a time-constant mean value. The
normal-order correction terms arise from the
nonlinearity of the original operator equation of
motion. In the approximation of standard Bogoliu-
bov theory these terms do not appear, the equation

of motion being
é

ino&, 1) = - (B2m)V2 &, 1) +f% [ErUF)
X{p* & +F, ) +o& +F,8)} . (3.8)

With g, A,(k), and A_(k) given by the general-
ized Bogoliubov theory, Eq. (3.7) is such a com-
plicated wave equation that solutions for ¢ (X, ¢)
cannot be expressed in closed form if at all. The
special solution for momentum K can, however, be
derived as follows. The Fourier transform of
Eq. (3.7)is

.y { i
(zﬁ—é—t-—yi>¢(1, t)=25i¢* (-L,1) , (3.9)

where o, t)=fd37 eZI'xqo(i,t) (3.10)
and y{ and 6 are given by Eq. (2. 23) in Paper II.
If the interaction potential was zero or at least
small compared to the kinetic energy, 0] would be
zero or negligible and there would be no coupling
of the Fourier components. Except for large [ this
coupling is always present, however. Thus rather
than being plane waves, the solutions of Eq. (3.9)

for momentum Kk have the form

-lwo

+ " k
opd,0=lc ®e "l ¢
5 -ZCL’E
+[C_(ke ]*ai T (3.11)

where wj; and C (k )/C_(K) are to be determined.
Substltutmg this form for the solution into Eq.
(3.9) for i=k and for I=-k gives

7zC, (BC_) + 54C? (&) +C2 ()} =0 (3.12)

and h’zw» =2 — 45,2 (3.13)

k k

-

which are equivalent to Eqs. (2.22) and (2.26) of
Paper II. As it should be, the Fourier inversion
of Eq. (3.11) is proportional to Eq. (1.8) for
k&, t).

In Paper I the GP equation

(X, t) = — (1%/2m) VX, t)

&, 1) [dr VE) P& +T,0[2 (3.14)
is given the meaning of a self-consistent Hartree
equation for the condensate wave function. In the
context of the present paper the GP equation may be
regarded, alternatively, as the equation of motion
for a one-body wave function ¥(x, ¢) that describes
both a uniform condensate and possible quasipar-
ticle excitations superimposed on this condensate.
Equation (3. 8) for ¢(Z, ) is simply a linearization
of Eq. (3.14), as implied in Paper I. Corrections
to the GP equation could be made by including the
nonlinear and normal-order correction terms
dropped in Eq. (3.8), but this generalization is not
within the objectives of the present paper. The
equation of motion for ¢,(X, ) is to be derived.

Perhaps it is worth noting here that while Eq.
(3.8) has been derived as an approximation to the
rigorous operator theory, one may, instead, regard
it as an initial consideration in deciding how to go
about solving the rigorous theory. The condensate
can be thought of as affecting the optimum choice
of expansion wave functions for the operator zp(x t).
While the plane-wave functions usually used for the
expansion are the free-field noninteracting particle
states, one may regard the coherent interaction
from the macroscopic number of particles in the
uniform condensate as an external potential to be
included in the otherwise free-field equation of mo-
tion for the boson excited states. Such an equation
of motion must be manufactured by a Bogoliubov
displacement and a concomitant linearization of Eq.
(3.14) taken as an ad koc “classical” equation of mo-
tion. From this point of view, the external con-
densate potential causes not only a constant energy
shift of V f?, the leading term in the chemical po-
tential, but also a coupling of the real and imagi-
nary parts of @(X, ¢) as in Egs. (3. 8) and (3. 11) with
the results that the particular solutions have both
positive- and negative-frequency parts and that the
sign of the excitation energy is indeterminable
from the mathematics.

Since the sign of the excitation spectrum is in-
determinate, one expects, as for the Klein-Gordon
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and Dirac fields, that the ¢-operator expansion
should have both positive- and negative-frequency
parts — an assertion equivalent to the Bogoliubov
transformation in Eq. (1.7). Only for high-% values
does the Kinetic energy term in Eq. (3.8) dominate
the condensate-potential term, in which case the
equation is the usual phase-invariant free-particle
equation of motion, and the operator expansion of
Eq. (1.7) reduces to only a positive-frequency part
with particle number a good quantum number.

Now concerning the main discussion, the equation
of motion for the imaginary part of ¢(X,?) is to be
derived. For the Bogoliubov approximation Eq.
(3.8) gives

2
n? <3—2> S(x,t) + (B2/2m)2 VS, t)

+2f[d*y UK - y)(- 72/2m) 37286;’”:0 . (3.15)

both for ¢,(x,?) and, neglecting surface terms, for
@,(x,%). Eq. (3.15) is an approximate equation of
motion for the velocity potential that follows the
one-body wave-function description of the quasi-
particle excitations of the liquid. As they should
be, the momentum eigenfunctions and eigenfrequen-
cies of Eq. (3.15) are just Eq. (1.8) for ¢(X, ¢) and
the standard Bogoliubov formula

niw %=¢ 2+2f2Uk

P (3.16)

“k
Unlike many of the theories concerning superfluid
helium, that of the present paper does not attempt
to derive the experimentally derived spectrum. In-
stead, Eq. (3.15) is used for the equation of motion
with the assumption that Up, is an effective interac-
tion potential that can be adjusted to make the
Bogoliubov formula for wp agree with the known em-
pirical spectrum. Although one might regard this
choice for U, as a T-matrix approximation, *® the
theory is simply a model for the excitations of
superfluid helium. However, it turns out that, be-
cause of the Fourier transformation and integral
approximation techniques to be used, all that is
needed for an equation of motion for S(x, ) is some
linear equation that gives the correct spectrum on-
ly in the immediate vicinity of #,, the & value for
which wiz/k is a minimum. Then even if the equa-
tion of motion for S(x,#) were improved, the essen-
tial properties used in the later mathematics of
this paper would be the same as those of Eq. (3. 15),
with Uj, an empirical interaction potential.
Although the equation of motion involves the ratio
/m, the solution of Eq. (3.15) with v, =0 on bound-
aries, or, equivalently, the Green’s function

Gx-x',t-t)=0, t>t'
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Glr-x"t-t") < |X- %' ‘lfooodk (/)

x[cos(k]i—i’l—wkt)
—cos(k,i—i']—wkt)], t<t’, (3.17)

with a suitable source distribution replacing the
boundary conditions, is tantamount to solving a
classical hydrodynamic boundary-value problem.
Such a boundary-value problem is actually an ap-
proximate but unique criterion for determining

the wave-function description of the excitations of
the condensed system of interacting bosons. Time-
retardation effects and time-varying boundaries
can be included in this way.

IV. ROTON RADIATION

In this and Secs. V and VI the linearized GP equa-
tion [Eq. (3. 8)] for the fluctuation part of (X, #),
will be applied to construct a model for the roton
emission from an ion complex moving at a velocity
greater than the roton critical velocity. Just as
classical electrodynamics suffices to describe the
behavior of the large number of photons being emit-
ted during Cerenkov radiation, it should be clear
from Secs. I-III that the fluctuation ¢(X, ) can be
used to describe the aggregate, coherent behavior
of the large number of rotons being emitted by the
moving-ion complex. That the roton emission is
indeed rapid is inferred both from Appendix A and
from the self-consistent results of the model to be
developed. Because of the significance of disper-
sion in the water-wave problem, * one can expect
that the roton-radiation model will not show the
large-amplitude shock waves characteristic of
Cerenkov radiation and Mach waves, and hence
that the linearized theory for ¢(x,t) should be ade-
quate. However, it was shown in Eq. (3.6) that,
for a different reason, the linearized theory is still
insufficient for the problem at hand, and that one
can calculate only a lower bound for the roton ra-
diation.

According to the linearized theory for ¢(X,¢) the
velocity potential for the disturbance around the
moving-ion complex should be expressible in the
form

SR,t)= [d3%’ [at' AR, t)GR-%",t-¢t"), (4.1)

where G(R - x’,¢-t’) is the Green’s function given
in Eq. (3.17) and A(x’,%’) is a suitable source dis-
tribution. Because A(x’,#’) and S(R, ) must have
the spatial dependencies x’-v#’ and R — v¢, this
equation is equivalent at time #= 0 to

S@®)= fasx"[ “ATARNGR+TT-%", 7). (4.2)
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Now, for low v, for which time-retardation effects
are unimportant, the velocity potential around a
sphere of radius @ moving in the x direction should
be

S(R)=- sva’x/R® . (4.3)
After integration by parts Eq. (4.2) does reduce to
this value provided the source distribution is given
by

A)=(1/2mwc2a®6"(x)0'(y)6"(z) , (4.4)
where the 6’ are derivatives of the & function and
¢ is the phonon velocity appearing in the low-k part

of the spectrum where w; ~ck. In other words,
with

r=R+vt ;
yE=E2 492 (4.5)
and &=x+0t ,
the expression
s Q0 %)
S(R) =——1 vcza3-8— dt dk—k—— !
27 ax J 6 w, 7
(4.6)

x[cos (k7 + wkt) - cos(kr - wkt)]

reduces to Eq. (4.3) when v << Vi in.

For the velocities of interest near 50 m/sec, Eq.
(4.8) is imprecise for at least three reasons. As
pointed out by Eq. (3.6), such high velocities are
an order of magnitude too large for the validity of
the small-amplitude theory. Then, too, when the
speed of propagation of waves through the medium
is not instantaneous but relatively slow, it is not
reasonable for a dipole source localized at the
center of a sphere to replace the effects of the
boundary of the sphere. The delay time for a dis-
turbance of the medium to travel from this dipole
to the edge of the sphere should be important, and
one would expect to have to consider a source dis-
tribution that covers the whole interior of the
sphere. Finally, as discussed in Appendix B,
another difficulty is that the process by which vor-
tex formation occurs may be competing with roton
emission for limiting the speed of the ion complex.

Yet, the far-field effects of the moving source
distribution should be qualitatively independent of its
precise form, and quantitatively dependent on only
its effective amplitude and strength. Since it ap-
pears quite difficult to analyze a general source dis-
tribution, the problem will be greatly simplified by
considering just the dipole source term. One
would at least expect Eq. (4.6) when evaluated at

ROTON CRITICAL VELOCITY IN SUPERFLUID HELIUM

the v of maximum validity to provide a lower bound
for the true source strength at higher velocities.

In other words, for the high velocities of interest,
the use of Eq. (4.4) should not be an overestimate
of the true source strength by much more than,
say, a couple of orders of magnitude. With this in
mind, Eq. (4.6) will be used to determine the ve-
locity potential even at high velocities. The results
will indicate that the source strength given in Eq.
(4.4) needs to be reduced in fact by a factor of 1073
or 10~ in order to ensure the validity of the linear-
ized theory.

The velocity potential S(R) will need to be deter-
mined only at large distances, ultimately in a sur-
face integral over a cylinder of arbitrarily large
radius about the sphere. For large R the integra-
tions in Eq. (4.6) for S(R) may be calculated either
by the method of stationary phase or by integration
by parts.

For v < Vi there are no points of stationary
phase, and integration by parts may be performed —
the major contribution to the integrations coming
from the lower limits =0 and £=0. In this case,
the result varies roughly as R™! for each integra-
tion and S R™2, which is certainly not a R™' radia-
tion field.

The points of stationary phase that exist for v
> Vmin Will be denoted by kg and Zg. Since the
method of stationary phase gives a contribution in
proportion to R~ 2 for each of the integrations, the
result is a R™! radiation field. The fact that only
narrow regions about kg and {5 contribute signif-
icantly to the integrations in this case gives two
particularly useful simplifications. The phenom-
enological spectrum wp, need not be fixed for all k.
In fact, it will turn out that only a very small range
of wpg in the roton region near the minimum phase
velocity wp/k will be needed for numerical work.

Another simplification is that the x derivative
may be commuted with the % integration with the
understanding that although the resulting % inte-
gration does not formally converge, it is to be
evaluated by the method of stationary phase. With
local field terms and the trigonometric functions
with positive definite arguments omitted, Eq. (4.6)
thus reduces to

= _ 1 5s o ER
S®) =5-ve’a f ak [ “at o -sinler -, 1).
0 o

k (4.7
The stationary-phase conditions are
cosa_ =V )/v (4.8)
s s
and » =Uk )t , (4.9)
s s's

where the angle ag has been defined by
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cosa=£&/r (4.10)
and V(%) and U(k) are the phase and group veloc-
ities

V(k)=wk/k : (4.11)

U(k):dwk/dk : (4.12)

The stationary-phase conditions determining ks
and fg may be interpreted physically by using the
meaning of the phase and group velocities. As
illustrated in Fig. 2, the first condition states that
the component of Vv in the ag direction must match
a phase velocity of the medium. The equation is a
simple mathematical statement of the physics con-
tained in many phenomena — in order to maintain a
radiation wave pattern by continuously putting en-
ergy into the medium, the moving foreign body
must be able to move and exert a force that is al-
ways in phase with waves of the medium. In par-
ticular, the onset of roton emission occurs at the
critical velocity Vmin=(wp/k)min

The second stationary-phase condition, Eq. (4.9),
stipulates that the waves of wave number kg trav-
eling in the ag direction for the time ¢g interfere
constructively at the distance Uglg from the source
point where they were emitted. This is also illus-
trated in Fig. 2.

By using these physical interpretations for the
stationary-phase conditions, one can see that dis-
persion in wj, causes the wave pattern to be spread
over a region of space. For vcosag> Vpin, Eq.
(4. 8) can be satisfied for two values of £, one on
either side of kg, where V(kQ)=Vmin. Then Eq.
(4.9) gives two constructive interference positions
for the ks values emitted in this as direction. For

ol - /

w
U R

vt

~

§

FIG. 2. The relationship between various quantities
defined in the text. “O” is the instantaneous =0 position
of the sphere as it moves to the right along the x axis,
“p” a point at position R in the wave pattern and “Q” the
previous position of the sphere at time —¢ when it created
the disturbance that has propagated to point P.
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the larger of the two kg values, U(2)> V(&) and the
constructive interference tends to occur in front of
the moving sphere; while for the smaller of the
two kg values just the opposite is true.

The method of stationary phase can be applied
to Eq. (4.7) for large R, giving

S(R)=c%®(k/r){sin(® - ¥)/[Bk} - AR)C(®)]} ,

(4.13)
where A(R)=- ta[a]](ek) :
B()=V()-Uk), (4.14)

C(p)=ykv?/v® .

Kk is in the o direction from the x axis, and the
subscripts “s” have been omitted from the station-
ary-phase values of k , t, and a@. Since K will be
shown to be a slowly varying function of ﬁ, Eq.
(4.13) shows that the far-field disturbance created
in the liquid by the moving sphere is locally of the
form of the momentum wave functions described
in Sec. II with amplitude falling off roughly as R-'.
This roton wave-radiation field describes the ag-
gregate behavior of the large number of rotons be-
ing created by the moving sphere.

V. ASYMPOTIC FORM OF THE ROTON
WAVE-RADIATION FIELD

When the stationary-phase conditions and the
formula for S (R) are evaluated, it is convenient to
use the variable « instead of £. Since the power
lost through the roton-emission processes turns
out to be large compared to thatavailable to moving-
ion complexes in the actual experiments, » will be
assumed to be only slightly greater than the criti-
cal velocity Vipin. All calculations will be made
by taking the lowest-order terms from the expan-
sions of quantities in terms of the small fractional
increase of v above Viin. With A defined by

vV (A 8)s, (5.1)
min

the phase and group velocities in the roton region
can be written

VR)=v__ (1+A1%) (5.2)
min

and U(k)= Vmin{l +2(wa)/? (5.3)

where [ bounded by |I| <1 is a parameter defined by

E=kl+(A/WP21] , (5.4)
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k, being slightly smaller than the usually quoted
roton momentum for which wp, rather than wk/ k is
a minimum. Although the available experimental
data are not sufficient to fix kg9, Vmin, and Wat
high pressures and low temperatures, 27 the esti-
mates given in Table I can be made. 28

Using these parametrizations, one finds that Eq.
(4.8), the first stationary-phase condition, be-
comes

BE=1-12 , (5.5)
where B Ea/amax " (5.6)
witha = (2a)z | (5.7

while Eqs. (4.9) and (4.10) become
I~ +(1+2W tang)~ /2 | (5.8)

where 6 is the direction of R from the forward
direction. Positive I corresponds to &> k&, U(k)

> V(2), and hence 6 > 77, namely, constructive in-
terference occurring in front of the moving sphere,
while just the opposite is true for negative /. In
order to express B as a function of 6, Eq. (5.5) is
written as

B=(2W)“2tan6/(1 + 2Wtan0) . (5.9)

Thus B is approximately unity over a wide range
of 6 about 37, dropping to the value (2)~'/2 at 6,
and 7- 6., where

6 =@w)yz (5.10)
c

Equations (5.8) and (5.9) for 1(8) and B(9) are plot-
ted in Fig. 3 based on a value of 25 for W.

The locus of a wave front in the radiation wave
pattern can be determined as the envelope of tan-
gents to the wave front, provided only that the de-
pendence of K on a is known. As shown in Fig. 2
and Eq. (4.13), the wave vector at point P is in the
K direction and is perpendicular to the locus of
constant phase passing through this point. The
tangent to the wave crest passing through the point
P is also tangent to an auxiliary line drawn in the
o direction from the origin, the perpendicular dis-
tance of the tangent from the origin being R.
Thus, the tangent to the wave crest at the point P
can be established by constructing a line perpen-
dicular to the auxiliary line and passing through it
at the distance R, from the origin. The actual
wave crest passing through P is the envelope of all
such tangents for various a.

For a fixed phase of the argument of the sine
function in Eq. (4.13), R is a function of K and
hence a function of a. In particular,

TABLE I. The empirical pressure-dependent values
of the parameters for the phase velocity near its minimum
value.

?0 Vmin w Pressure
) (m/sec) (atm)
1.97 58 16.7 0
2.04 51 (25) (13)
2,11 44 (33) 25.3
R ,=D/k(a), (5.11)

where D is a constant and k(a) is determined from
Egs. (5.4) and (5.5). Thus the locus of points of
a given phase in the wave pattern is constructed
graphically by drawing lines perpendicular to the
a direction and passing at a distance D/k(a) from
the origin. For a given constant D the envelope of
many such lines is the locus of constant phase
points. Changing D by 27 and repeating the pro-
cedure gives the locus of the next period in the
wave pattern. The result of such a graphic con-
struction procedure is displayed in Fig. 4, the
formulas for oy,ax, 0o, and |k —kylmax being
given in Egs. (5.7), and (5.4), respectively. For
A=0.001 one has

@ ax =2.6 deg ,

Bc =6.6 deg ,

Ik — kO'maX =0. 0065k0 5

(5.12)

In a discussion of the amplitude of the roton-ra-
diation field, it is perhaps more meaningful to
evaluate the magnitude of the density fluctuations
than the velocity potential itself. Since S (R) has

+]
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gy |

FIG. 3. The variables [(6) and B(f) as functions of A,
0.~ 7° being independent of A.
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“max

FIG. 4. The wave pattern around a small moving
sphere. Outside fore and aft cones of angle 0., the as-
ymptotic direction of the wave crests is at an angle Qriax
from the y axis.

been shown to be locally of the momentum type
discussed in Sec. II, Samp and pamp are simply
related by means of Eqs. (2.16) and (2.17), and the
real part of Eq. (3.8), namely, by

5amp/f2: [2/ V(K )]samp : (5.13)

After carrying out the algebra for the expansions
of Egs. (4.13) and (4. 14) in terms of A, one finds

B/f =@/ WY A%, [V, )a/y)B(6) +6(a17)

~2x10%(a/y)B(6) , (5.14)
where the data compiled in Table II have been used,
and B(6) is given in Fig. 3.%

As discussed following Eq. (3.6), the linear the-
ory of helium wave excitations was not expected to
hold near the foreign body when it moves at-high
velocities. Although only valid at positions far
away from the foreign body, Eq. (5.14) indicates
an unreasonable large-amplitude disturbance at
positions nearer than 103-10* times the ion radius,
depending on whether or not one chooses to distin-
guish between the superfluid and condensate den-
sities. Of course, this result is inconsistent with
the linear theory assumed in Sec. IV to evaluate
the dipole source strength. However, the geomet-
ric far-field properties of the wave pattern must
depend only on the form of the Green’s function for
excitations of the medium, not on the strength of
the source which gives rise to the wave pattern.
Since the Green’s function, Eq. (3.17), has been
used as the basis for all the formulas and discus-

sion, the geometric form given in Fig. 4 must hold
for the asymptotic wave pattern; and the spatial
dependence of Eq. (5.14) must apply at large dis-
tances around any foreign body moving through the
medium at a velocity slightly greater than V ip.
For quantitative results, lower bounds follow by
reducing the source strength of Eq. (4.4) by even
more than 1072, say, by 1072 or 1074, in order to
ensure the validity of the linearized theory.

Referring to p(6)in Fig. 3, one sees that Eq.

(5. 14) gives an unusual spatial dependence for the
amplitude of the wave pattern. Outside a cone of
7° or so around the forward axis, p is propor-
tional to 1/y rather than 1/R. On the other hand,
for 6 near zero or 7, Eq. (5.9) indicates that g
~tanf; and Eq. (5.14) becomes p < 1/x along the
x axis, the spatial dependence passing smoothly
between these two extremes according to 8(6) in
Fig. 3.

The most surprising aspect of Eq. (5. 14) is its
independence of A. Physically, this means that
when the radiation wave pattern sets in at v = Viyip,
it does so quite abruptly with an amplitude inde-
pendent of v, so long as v is not too much greater
than Vijin. One might expect the amplitude of the
wave pattern to grow in proportion to some posi-
tive power of A. However, since the time integra-
tion in Eq. (4.2) extends to infinity, Eq. (5.14) ap-
plies only after the foreign body has been moving
at the same velocity for an infinitely long time.
For this equilibrium situation the amplitude of the
wave pattern is independent of A for small A,

VL. ENERGY LOSS BY THE ROTON RADIATION

Sections I-V have estimated the far-field distur-
bance created by a foreign body moving through
the superfluid component of helium at an equilib-
rium velocity v slightly greater than the roton
critical velocity of about 50 m/sec. The amplitude
of the wave pattern in Fig. 4 is independent of A,
while the asymptotic direction of the wave crests
is proportional to A2, Since the far-field dis-
turbance created in the medium is locally sinusoi-
dal, energy flow through the wave pattern is given
approximately by Eq. (2.27) - which is propor-
tional to the square of the local amplitude and is in
the direction of the local wave vector of this dis-

TABLE II. The speed of sound, the fluid density, and
the negative-ion bubble radius in helium II.

c mf 2 a (approximate) Pressure
(m/sec) (g/cm?) (A) (atm)
239 0.145 20 0
313 ©0.160 15 12
365 0.170 14 25
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turbance, as one would expect. Thus, at least at
positions far from the foreignbody, the magnitude
of the energy flow through the medium is indepen-
dent of A, while its direction is perpendicular to
the wave crests shown in Fig. 4 or, in other _
words, outward from the path of the foreign body
at an angle proportional to A2 The total energy
being lost by the moving foreign body in the form
of energy radiation through the roton wave pattern
will be calculated in this section by integrating the
energy flow through a closed surface around the
foreign body, in particular, through a cylinder of
arbitrarily large radius y with axis along the path
of the moving sphere. Since the main contribution
to this integral is over a length on the order of
ycotf,, which is independent of A, the energy loss
should be proportional to A/2,

Where y is the radius of the cylindrical surface,
the power loss P is

e jcylinder e JE

=27y [ dk (dx/dk) (k)Szamp(k)sina(k), (6.1)

where J(k) is given by Eq. (2.28) and the limits on
the % integration are determined by the condition
that V(k)<wv, which is equivalent to |/|<|. In the
determination of the lower-bound estimate of P any
multiplicative factor for the source strength and
hence Samp should be squared for adjusting the
resulting values of P. In spite of the lower-bound
adjustment factor on the order of 10~¢ to 10~8, the
numerical result for P turns out to be unrealizable
experimentally.

The algebra involved in the evaluation of Eq.
(6.1) to lowest order in A is lengthy, although
somewhat simplified by a fortuitous cancellation
of some rather involved terms in the product of
dx/dk and Samp?®. The result is independent of y
as it should be.

Of more practical interest than the power P is
the electric field that must be applied to an ion
complex in order to maintain its velocity as it un-
dergoes the loss of energy due to roton emission.
The required electric field is P/ve, which can be
evaluated to give

6
Bla)= g —5 -y

X (kga)® A2 4 0(A%?) | (6.2)

where M is defined as 2 ma®mf?=1.7Tx10"*' g.

Since Mc?2/e~0.40 V, this result becomes

E(A)=~2.6x10* A2 V/cm |, (6.3)
while the lower-bound estimate is

E(b) ~10°AY2 V/em (6.4)

lower
bound

which are to be compared to experimentally used
voltages on the order of hundreds of V/cm 3° and
an electric breakdown voltage on the order of
10 V/cm.

CONCLUSION

Both the hydrodynamic model and the “golden
rule” estimate of Appendix A indicate that it should
be impossible experimentally to force a negative-
ion complex to move through superfluid helium at
a velocity observably greater than the Landau ro-
ton critical velocity. Neeper and Meyer have
made an initial test of this prediction and find no
contradiction. ® However, the time-of-flight meth-
od used to date in the ion experiments is not sensi-
tive enough to measure small A, For A equal to
1%, the lower-bound E value of Eq. (6.4) is on the
order of 10? V/ ¢m. Yet, in the experiments an
electric field is switched in a square-wave signal
applied across certaingrids and is apparently lim-
ited to E values on the order of a few hundred
V/cm.3° Although electric breakdown occurs in
liquid helium at about 10® V/em,?! it is unlikely
that the present experimental techniques will ever
be able to detect an increase of ion velocity above
the roton critical velocity.

From the point of view of the “golden rule” cal-
culation, the prediction of large power dissipation
at v, is due to an avalanche of quasiparticle emis-
sions from the ion complex once it moves fast
enough for these creation processes to be allowed
kinematically. From the hydrodynamic point of
view, this sudden onset of energy dissipation is due
to the creation of a wave radiation field by the ion
complex once it moves at least as fast as the mini-
mum phase velocity wk/k of the possible excitations
in the model superfluid system. Either way, the
roton energy dissipation is relatively macroscopic,
compared to the single electronic charge of the ion
complex, and hence its ability to be forced through
the fluid by an electric field.

It is, perhaps, somewhat unfortunate that the in-
crease of v above the roton critical velocity is not
observable. If future experiments could determine
v accurately enough to measure its increase above
v¢ for large electric fields, one would be able to
determine the strength of the interaction between
the negative-ion complex and the superfluid quasi-
particles. The pressure dependence of this inter-
action strength would be particularly interesting
since Eq. (4.4) indicates that this interaction
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strength is proportional to the volume of the ion
complex rather than to its cross-sectional area,
which is what one might expect from a scattering
cross-section point of view. Although the pres-
sure dependence of Eq. (6.2) is at best, qualita-
tive, it suggests that for a given A the required E
at 25 atm is about 15% larger than that required
at 12 atm.

One of the objectives of the present paper was
to give a theoretical model for the interaction be-
tween an ion complex and a superfluid quasipar-
ticle. Because of the success of the deformation-
potential theory of the electron-phonon interaction
in metals, a hydrodynamic model for the ion-qua-
siparticle interaction was investigated. Although
this model has direct intuitive meaning, further
theoretical efforts are needed to determine the in-
teraction quantitatively.

Perhaps the most significant aspect of the hy-
drodynamic model given here for the roton criti-
cal velocity is the inclusion of time-retardation
effects due to the time that it takes for a distur-
bance created at one point in the superfluid to
propagate to a second point in the superfluid, ef-
fects which have not been discussed before in the
literature. From the hydrodynamic point of view
the roton radiation field is, in fact, nothing but a
constructive interference effect due to this time
retardation.

The dipole backflow of Feynman and Cohen25 has
been shown by Miller, Pines, and Nozieres® to
be due, on the microscopic scale, to the self-en-
ergy cloud of the long-wavelength phonons coupled
to the impurity atom moving much slower than the
speed of sound. Such a description does not allow
for time-retardation effects in the response of the
liquid around the moving impurity atom. The pres-
ent wave-radiation model suggests that one should
try to incorporate these time-retardation effects
in any classical picture of the local roton self-
energy cloud. )

Also, as discussed in Appendix B, time-retar-
dation effects may be important for understanding
the process by which primordial vorticity canform
in a normally curl-free superfluid.

The physical interpretation of the hydrodynamic
model given here for the roton critical velocity is
the same as that for many classical phenomena, 4,5
To build up and sustain a wave-radiation field, a
foreign body must supply energy in a continuous
manner, by, say, pushing at a position of fixed
phase in the wave pattern it is trying to maintain.
Thus the motion of a foreign body can stimulate
the radiation of energy only when it moves at least
as fast as the minimum phase velocity of the wave
excitations of the medium in which it moves.
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APPENDIX A

An ion complex moving through superfluid heli-
um with momentum p=M7V can undergo an inelas-
tic creation process wherein a quasiparticle of
momentum 7%k and energy #w,is excited in the
liquid. Although the interaction between the ion
complex and the quasiparticle is an unknown quan-
tity, ® one can denote its average matrix elements
by F. Then for plane waves with p > 7#/Q'/3, Q
being the volume of the ion complex, the Fermi
“golden rule” gives’

k/k =
Gar T H
(A1)

R(v)=

R2dk [ du-— i

for the rate at which quasiparticles are created by
the ion complex. As in the main body of this pa-
per, wp/k may be identified with the phase velocity
V() of the quasiparticle excitations. Then in the
notation of Eqgs. (5.1) and (5.4) for » and &, R(¥)
is the function of the ion’s velocity given by

R@):le V(k) <o * 9

(27 7%)2 v
_l__lz sl Al/2
wizan v (a2)
min

for v>Vmin, and zero otherwise. Here A is the
relative increase of v above Vpin. The Landau
kinematics contained in the 6 function of Eq. (A1)
is manifest in the V() <v condition on the % inte-
gration of Eq. (A2) and the well-known result R(»
< Vmin)=0. Likewise, R(v> Vipin) <A!/2 is also
a result of the simple kinematics.

In order to state quantitatively the power dissi-
pated by the roton creation processes, it isneces-
sary to make an estimate of F. Since the quasi-
particles in the roton region have to some extent
a single-particle nature, the interaction between
the ion complex and these quasiparticles is as-
sumed to be roughly that of the interaction between
two helium atoms, that is, F is assumed to be

within a few orders of magnitude of, say, 10 °K.

Using this value, one finds
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R(v) ®5x10'7A'/2 creations/sec (A3)

which is quite large unless A is vanishingly small.
On the basis of this equation for R(v) the electric
field wpR(v)/Vin required to supply the power to
the ion complex and the mean free path v/R(v) of
the ion complex between roton emissions are

E()~5x10° A2 V /cm (A4)
and A(p)~10"6 A-1/2 R | (A5)

This X is so small that it is physically meaning-
less. It appears that the rotons are emitted in such
rapid succession by the ion complex that consider-
able energy dissipation is involved and that the rel-
evant quasiparticle states may become macroscopi-
cally occupied in the sense that n - = is used inSec.
I.

APPENDIX B

[Note added in proof: In a recent letter {Phys.
Rev. Letters 23, 1491 (1969)} R. J. Donnelly and
P. H. Roberts give a calculation for the probability
of a“proto-ring” becoming a “critical fluctuation,”
namely a piece of vortex ring sufficiently large to
become attached to an ion complex. The present
Appendix suggests a mechanism for understanding
the formation and growth of their “proto-rings.” ]

The qualitative discussion given here suggests
that the retarded dipole flow found for » Sv, may
well be related to the process by which primordial
vorticity is created in the superfluid component of
helium II. The central concepts of this Appendix
are Thomson’s theorem, 33 which states that the
circulation cannot change around a closed path in
a classical nonviscous fluid, and that, while re-
tarded dipole flow goes over into wave radiation
as discussed in the text, this dipole flow is qual-
itatively quite similar to the flow around a vortex
ring. 3

When first considering the possible means by
which primordial vorticity can be created in a su-
perfluid, one is tempted to invoke analogy with the
known properties of classical fluids for which vor-
ticity can form near a boundary surface and then
enter the fluid. However, this growth process oc-
curs only because of a small amount of viscosity in

the classical fluid, and it is well known that the lim-

it of zero viscosity in classical hydrodynamic the-
ory gives entirely different flow characteristics
from those obtained by starting with zero viscosity
assumed initially.3® In the former case the amount
of vorticity is infinite with a wake forming behind
any moving object, while in the latter case there
is no vorticity at all. One needs to understand how
there can be, in spite of Thomson’s theorem, a

change in circulation around a closed path in the
superfluid.

One possibility is that the superfluid flow pattern
changes abruptly by a quantum transition, 3¢ but the
experiments with ion complexes do not substantiate
this possibility. 5,8 It appears instead that the su-
perfluid flow around an ion complex changes grad-
ually from a curl-free to vortex-ring flow pattern.

The possibility that the transition occurs by a
gradual metamorphosis is perhaps related to the
perturbation mixed-state idea of Pollack3” and to
the close similarity between dipole flow and the
flow around a vortex ring. Figure 5 shows qual-
itatively the retarded dipole flow discussed in the
text for v SV ;. Since the circulation [V-dl
around a flow line that begins and ends on the sur-
face of the sphere is finite, one needs to under-
stand how this circulation can break away from the
surface. For this process to occur some kind of
anomalous flow region with nonzero circulation
must develop in the vicinity of the surface, thisre-
gion being indicated by the slashed area in the fig-
ure. Then one might suppose that the path around
which the circulation is evaluated closes when
[V.dl=7/m, the quantized value characteristic of
the superfluid.

Thus, a possible next step beyond asking what
happens to Thomson’s theorem is to try to justify
anomalous flow regions in which VXV #0 and hence
in which the GP equation cannot be used as the ba-
sis of a theory. Of course, many alternatives may
be suggested, such as localized clouds of roton
normal fluid or a timely scattering that could jar
the ion out of its position in the dipole flow pattern.
The time-retardation effects found in conjunction
with the roton wave-radiation field should also be
mentioned. For V=, the dipole flow pattern
should be even more retarded than in the flow pat-
tern shown in Fig. 5. With the dipole flow al-
most “stretched” off the ion complex already just

FIG. 5. Retarded dipole flow.
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because of time retardation, one has all the more
reason to suspect that a fluctuation of any sort
could shift flow lines off the surface to make
them close in the bulk superfluid.

What is suggested here, then, is that the property
of an unchangeable circulation around a closed path
in a superfluid should be given at least as much
attention in a theory for primordial vortex forma-
tion as is given to the quantization condition [v
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-dl=7%/m. This line integral should be around a
path beside the ion complex rather than through
or around the complex itself.® Time-retardation
effects may be instrumental for understanding
the change in circulation in the superfluid; and if
scattering fluctuations of the ion are involved,
the critical velocity for vortex creation need not
be a unique function of ion radius. ®
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